Sains Malaysiana 54(8)(2025): 1945-1956
            
          
          http://doi.org/10.17576/jsm-2025-5408-06
                    
          
          
             
          
          Pembangunan Parameter Pengesanan Bahan
            Pencemar dan Aplikasi Pemberitahuan melalui Kemudahan Internet Perkara (IoT) untuk
            Sensor Elektrokimia Mikrob
            
          
          (Development of Pollutant Detection Parameters
            and Notification Applications through Internet of Things (IoT) Facilities for
            Microbial Electrochemical Sensors)
            
          
          
             
          
          YASHAWINI PHRIYA RAUICHANDRAN1, RYAN
            YOW ZHONG YEO1, MUHAMMAD FARHAN HIL ME1, WEI LUN ANG1,2,
            MIMI HANI ABU BAKAR1, KEE SHYUAN LOH1, MANAL ISMAIL1,2,
            MOHD NUR IKHMAL SALEHMIN3, BEE CHIN KHOR4 & SWEE SU
            LIM1,*
  
          
          
             
          
          1Fuel Cell Institute, Universiti Kebangsaan Malaysia,
            43600 UKM Bangi, Selangor, Malaysia
            
          
          2Department of Chemical and Process Engineering, Faculty
            of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
            Bangi, Selangor, Malaysia
            
          
          3National Nanotechnology Center (NNC), Ministry of
            Science, Technology, and Innovation (MOSTI), Precint 1, 62000, Putrajaya,
            Malaysia
            
          
          4Indah Water Research Centre (IWRC), Indah Water
            Konsortium Sdn. Bhd. Lot 3938, Jalan Chan Chin Mooi, Titiwangsa, 53200 Kuala
            Lumpur, Malaysia
            
          
          
             
          
          Diserahkan: 26 November 2024/Diterima: 23 Jun 2025
            
          
          
             
          
          
          Abstrak
            
          
          Penyelidikan
            ini memfokuskan pada pembangunan dan pengesahan biosensor untuk pemantauan
            kualiti air yang cekap melalui pengesanan automatik isyarat ketidakpatuhan.
            Biosensor ini menggunakan sistem elektrokimia mikrob yang maju dengan sokongan
            PicoLog Cloud, yang mengumpul data, menganalisis trend dan menghantar pemberitahuan
            kepada pengguna melalui SMS atau emel sekiranya terdapat ketidakpatuhan. Model
            matematik telah dibangunkan untuk meningkatkan ketepatan pengesanan dengan
            mengenal pasti Kadar Perubahan (RoC) isyarat biosensor sebagai parameter utama.
            Model ini menetapkan ambang ±30 mA/min yang telah disahkan melalui uji kaji
            makmal terkawal. Sensitiviti biosensor ini dapat dibuktikan melalui pengesanan
            output arus elektrik (50-300 µA) dengan penurunan ketara pada 0 µA pada
            kepekatan 100 mg/L 4-nitrofenol. Sistem ini berjaya mengesan lonjakan
            isyarat yang ketara akibat pengenalan medium baharu dan membezakannya daripada
            gangguan persekitaran seperti gangguan elektrik atau gelembung udara
            terperangkap. Analisis komuniti mikrob menunjukkan kelimpahan dominan Proteobacteria (34%), khususnya Alphaproteobacteria dan Gammaproteobacteria yang menyokong
            keadaan anaerobik yang diperlukan oleh Desulfobacterota (kurang daripada 10%). Walaupun kelimpahannya lebih rendah, Desulfobacterota memainkan peranan
            penting dalam penjanaan arus, menonjolkan hubungan simbiotik antara spesies
            mikrob untuk mengekalkan fungsi dan kecekapan biosensor. Penemuan ini
            menegaskan kemampuan biosensor untuk menyediakan pemantauan masa nyata dan
            pengesanan awal, mengurangkan kebergantungan pada pensampelan dan analisis
            manual. Inovasi ini menawarkan penyelesaian mampan untuk loji rawatan air sisa
            dan aplikasi pemantauan alam sekitar. Integrasi model matematik dengan
            pemahaman mikrob meningkatkan kemampuan biosensor, membolehkan interpretasi
            isyarat yang tepat dan operasi yang boleh dipercayai. Kajian ini membuktikan
            potensi gabungan elektrokimia mikrob dan sistem awan automatik untuk penyelesaian
            pemantauan kualiti air yang berskala dan berimpak tinggi.
  
          Kata kunci: Biosensor
            elektrokimia mikrob; model matematik; pemantauan kualiti air; pengesanan masa
            nyata; sistem pemberitahuan automatik
            
          
          
             
          
          Abstract
            
          
          This study
            focuses on developing and validating a biosensor for efficient water quality
            monitoring through automatic detection of non-compliance signals. The biosensor
            employs an advanced microbial electrochemical system supported by PicoLog
            Cloud, which collects data, analyzes trends, and sends notifications to users
            via SMS or email in the event of non-compliance. A mathematical model was
            developed to enhance detection accuracy, identifying the Rate of Change (RoC)
            of the biosensor signal as a key parameter. The model defines a threshold of
  ±30 mA/min, validated through controlled laboratory experiments. The
            biosensor’s sensitivity was confirmed by the detection of current outputs
            (50-300 µA), with significant drop to 0 µA at 100 mg/L of 4-nitrophenol. The
            system successfully detected significant signal spikes caused by the
            introduction of new media and differentiated these from environmental noise,
            such as electrical interference or trapped air bubbles. Microbial community
            analysis showed a dominant abundance of Proteobacteria (34%), particularly Alphaproteobacteria and Gammaproteobacteria, which
            support anaerobic conditions required by Desulfobacterota (under 10%). Despite their lower abundance, Desulfobacterota play a critical role in current generation, highlighting a symbiotic
            relationship between microbial species to maintain biosensor functionality and
            efficiency. The findings underscore the biosensor’s ability to provide
            real-time monitoring and early-warning detection, reducing reliance on manual
            sampling and analysis. This innovation offers a sustainable solution for
            wastewater treatment plants and environmental monitoring applications. The
            integration of mathematical modeling with microbial insights strengthens the
            biosensor’s capabilities, enabling precise signal interpretation and reliable
            operation. This work demonstrates the potential of combining microbial
            electrochemistry and automated cloud systems for scalable and impactful water
            quality monitoring solutions.
  
          
          Keywords: Automated notification system; mathematical
            model; microbial electrochemical sensor; real-time detection; water quality
            monitoring
            
          
          
             
          
          Rujukan
            
          
          
            
            Adekunle, A., Vidales, A.G., Woodward, L. & Tartakovsky, B.
              2021. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environmental Science and Pollution Research 28(10): 12792-12802.
              doi:10.1007/s11356-020-11245-6
  
            
          Anjum, A., Mazari, S.A., Hashmi, Z., Jatoi, A.S.
  & Abro, R. 2021. A review of role of cathodes in the performance of
            microbial fuel cells. Journal of Electroanalytical Chemistry 899:
            115673. doi:https://doi.org/10.1016/j.jelechem.2021.115673
  
          
          Chu, N., Cai, J., Li, Z., Gao, Y., Liang, Q., Hao,
            W., Liu, P., Jiang, Y. & Zeng, R.J. 2022. Indicators of water biotoxicity
            obtained from turn-off microbial electrochemical sensors. Chemosphere 286: 131725. doi:https://doi.org/10.1016/j.chemosphere.2021.131725
  
          
          Costa de Oliveira, M.A., D’Epifanio, A., Ohnuki, H.
  & Mecheri, B. 2020. Platinum group metal-free catalysts for oxygen
            reduction reaction: Applications in microbial fuel cells. Catalysts 10(5): 475. doi:10.3390/catal10050475
  
          
          Du, L., Yan, Y., Li, T., Liu, H., Li, N. &
            Wang, X. 2022. Machine learning enables quantification of multiple toxicants
            with microbial electrochemical sensors. ACS ES&T Engineering 2(1):
            92-100. doi:10.1021/acsestengg.1c00287
  
          
          Guadarrama-Pérez, O, Guevara-Pérez, A.C., Guadarrama-Pérez,
            V.H., Bustos-Terrones, V., Hernández-Romano, J., Guillén-Garcés, R.A. &
            Moeller-Chávez, G.E. 2023. Bioelectricity production from the anodic
            inoculation of geobacter sulfurreducens DL-1 bacteria in constructed
            wetlands-microbial fuel cells. Bioelectrochemistry 154: 108537.
            doi:https://doi.org/10.1016/j.bioelechem.2023.108537
  
          
          Kretzschmar, J., Böhme, P., Liebetrau, J., Mertig,
            M. & Harnisch, F. 2018. Microbial electrochemical sensors for anaerobic
            digestion process control - Performance of electroactive biofilms
            under real conditions. Chemical Engineering & Technology 41(4):
            687-695. doi:https://doi.org/10.1002/ceat.201700539
  
          
          Kumar, T., Naik, S. & Jujjavarappu, S.E. 2022.
            A critical review on early-warning electrochemical system on microbial fuel
            cell-based biosensor for on-site water quality monitoring. Chemosphere 291: 133098. doi:https://doi.org/10.1016/j.chemosphere.2021.133098
  
          
          Kumar, S.S., Malyan, S.K., Basu, S. & Bishnoi,
            N.R. 2017. Syntrophic association and performance of Clostridium,
              Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts
            for bioelectricity generation in dual chamber microbial fuel cell. Environmental
              Science and Pollution Research 24(19): 16019-16030.
            doi:10.1007/s11356-017-9112-4
  
          
          Lim, S.S., Chong, P.S., Jong, B.C., Abu Bakar, M.H.,
            Wan Daud, W.R., Md. Jahim, J. & Salehmin, M.N.I. 2022. Microbial fuel
            cell-based sensor for Enterobacter sp. KBH6958 activity monitoring
            during hydrogen production: The effects of pH and glucose concentration. Journal
              of Applied Electrochemistry 52(9): 1327-1342.
            doi:10.1007/s10800-022-01719-5
  
          
          Lim, S.S., Fontmorin, J-M., Salehmin, M.N.I., Feng,
            Y., Scott, K. & Yu, E.H. 2022. Enhancing hydrogen production through anode
            fed-batch mode and controlled cell voltage in a microbial electrolysis cell
            fully catalysed by microorganisms. Chemosphere 288: 132548.
            doi:https://doi.org/10.1016/j.chemosphere.2021.132548
  
          
          Medvedev, I., Kornaukhova, M., Galazis, C., Lóránt,
            B., Tardy, G.M., Losev, A. & Goryanin, I. 2023. Using AI and BES/MFC to decrease
            the prediction time of BOD(5) measurement. Environmental Monitoring and Assessment 195(9): 1018. doi:10.1007/s10661-023-11576-0
  
          
          Muhammad Farhan Hil Me, Ang Wei Lun, Othman Ahmad
            Razi, Mohammad Abdul Wahab, Nasharuddin Ahmad Afiq Arshad, Mohd Aris Alijah,
            Khor Bee Chin & Lim Swee Su. 2024. Assessment of the microbial
            electrochemical sensor (SENTRYTM) as a potential wastewater quality
            monitoring tool for common pollutants found in Malaysia. Environmental
              Monitoring and Assessment 196(4): 366. doi:10.1007/s10661-024-12526-0
  
          
          Niwa, M., Pan, Z. & Shimamoto, S. 2020. IoT sensor
            network powered by sediment microbial fuel cell. 2020 IEEE 17th Annual
              Consumer Communications & Networking Conference (CCNC). pp. 1-5.
            doi:10.1109/CCNC46108.2020.9045606
  
          
          Nourbakhsh, F., Mohsennia, M. & Pazouki, M. 2020.
            Highly efficient cathode for the microbial fuel cell using LaXO3 (X = [Co, Mn, Co0.5Mn0.5]) perovskite
            nanoparticles as electrocatalysts. SN Applied Sciences 2(3): 391.
            doi:10.1007/s42452-020-2048-1
  
          
          Perona-Vico, E., Feliu-Paradeda, L., Puig, S.
  & Bañeras, L. 2020. Bacteria coated cathodes as an in-situ hydrogen
            evolving platform for microbial electrosynthesis. Scientific Reports 10(1): 19852. doi:10.1038/s41598-020-76694-y
  
          
          Schröder, U., Harnisch, F. & Angenent, L.T. 2015.
            Microbial electrochemistry and technology: Terminology and classification. Energy
              Environ. Sci. 8(2): 513-519. doi:10.1039/C4EE03359K
  
          
          Spurr, M.W.A., Yu, E.H., Scott, K. & Head, I.M.
            2020. A microbial fuel cell sensor for unambiguous measurement of organic
            loading and definitive identification of toxic influents. Environ. Sci.:
              Water Res. Technol. 6(3): 612-621. doi:10.1039/C9EW00849G
  
          
          Tu, J.V. 1996. Advantages and disadvantages of
            using artificial neural networks versus logistic regression for predicting
            medical outcomes. Journal of Clinical Epidemiology 49(11): 1225-1231.
            doi:https://doi.org/10.1016/S0895-4356(96)00002-9
  
          
          Veerubhotla, R., Nag, S. & Das, D. 2019.
            Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power Sources 438: 226947.
            doi:https://doi.org/10.1016/j.jpowsour.2019.226947
  
          
          Wu, S-S., Hernández, M., Deng, Y-C., Han, C., Hong,
            X., Xu, J., Zhong, W-H. & Deng, H. 2019. The voltage signals of microbial
            fuel cell-based sensors positively correlated with methane emission flux in
            paddy fields of China. FEMS Microbiology Ecology 95(3): fiz018.
            doi:10.1093/femsec/fiz018
  
          
          Yeo, R.Y.Z., Ang, W.L., Mahmoudi, E., Ismail, M., Abu
            Bakar, M.H., Ahmad Razi, O. & Lim, S.S. 2024. Enrichment of electrogenic
            microbes on surface-modified stainless steel 304L for rapid start-up of
            microbial electrochemical sensors. Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2024.03.022
  
          
          Yeo, R.Y.Z., Chin, B.H., Me, M.F.H., Chia, J.F., Pham,
            H.T., Othman, A.R., Mohammad, A.W., Ang, W.L. & Lim, S.S. 2023. Rapid surface
            modification of stainless steel 304L electrodes for microbial electrochemical
            sensor application. ACS Biomaterials Science & Engineering 9(11):
            6034-6044. doi:10.1021/acsbiomaterials.3c00453
  
          
          Zafar, Z., Ayaz, K., Nasir, M.H., Yousaf, S., Sharafat,
            I. & Ali, N. 2019. Electrochemical performance of biocathode microbial fuel
            cells using petroleum-contaminated soil and hot water spring. International
              Journal of Environmental Science and Technology 16(3): 1487-1500.
            doi:10.1007/s13762-018-1757-0
  
          
          
             
          
          *Pengarang untuk surat-menyurat; email: limss@ukm.edu.my